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INTERACTION BETWEEN WATER BORNE WAVES ANO SEISMIC WAVES IN THE OCEAN
BOTTOM: THE FORWARD- AND INVERSE PROBLEM.

ABSTRACT

The work 1s divided into two main parts. The first part, the
forward problem, is aimed at establishing a theoretical
framework for excitation and propagation of elastic waves in
linear homogeneous isotropic media.

The second part, the inverse problem , is aimed at determining
the environmental parameters which significantly influence
acoustic propagation in a shallow water environment.

The methods developed here indicate that, under favorable
conditions, it is possible to infere ocean bottom parameters
such as P- and S- wave phase velocities from near surface
measurements.

1 _INTRODUCTION

The work reported here is a partial fulfillment of the requirements
for the degree Dr Ing under the supervision of professor Jens Hovem at

the University ot Trondheim, the Norwegian Institute of Technology.

The work is divided inta two main parts. The first part, the forward
problem, is aimed at establishing a theoretical framework for
excitation and propagation of elastic waves in linear homogeneous
1sotropic media. As the solution is limited to horizontally stratified

media, a separable solution of the equation of motion is derived.

In the outset, a numerical solution was implemented based on the
Thomson-Haskel matrix method{3,4) as derived by Kutschale{7]. This
approach was late- abandonded and a two-dimensional model - developed
at the SACLANT ASW Research centre at LaSpezia, 1ltaly by Henrik

Schmidt [9) - was modified to the present three-dimensional version.




The second part, the 1lnverse problem , 1s aimed at determining the
environmental parameters that significantly influence acoustic
propagation in a shallow water environment. This 1is done by
interpreting shot data gathered by a seismic survey. Interpretation is
sought verified by comparison with output from the numerical model. To
my knowledge, the inverse problem methods utilized here have not been

published earlier.

S



2 THE FORWARD PROBLEM

It 1s well known that separable solutions 2ad to the use of integral
transform techniques which yield an exact solution to the wave
equation in stratified elastic media{1]. The field parameters are,
however, determined by linear combinations of the basis for the
solution space I e inverse transform integrals. In cases with only a
few layers, contour integration can be used to reduce the numerical
computation, 1nvolving only a few integrations over finite 1ntervals,
e g [1). In general numerical models, however, such techniques are

inconvenient, and direct numerical integration has to be used.

In underwater acoustics in general, and also for the cases we will
1nvestigate here, the sources are usually contained within a volume
small compared to the volume of interest, thus the radiated field 1s
most canveniently described in a cylindrical coordinate system. The
field 1is then given by Hankel transform integr2ls which are not well
suited for direct numerical integration due to the Bessel functions
involved. In order to overcome this problem, Marsh[2] in 1961
introduced what was later called the fast field approximation (FFP =
Fast Field Program) of the Hankel transform. The fleld is separated
into ingoing and outgoing parts by expressing the Bessel function 1in
terms of Hankel functions, the ingoing part is disregarded and the
outgolng part 1s replaced by its large argument approximations. The
integrals are then evaluated by means of the fast Fourier transform
{FFT). As shown later by DiNapoli and Deavenport([5], for the
two-dimensional case, the fast field approximation gives no
si1gnificant errors at ranges longer than a few wavelengths from the

axis.

After the 1introduction of the fast field technique, a number of
numerical models have been developed, based an this integration method

and thus usually called fast field programs.




In spite of thelr common name, these models are significantly
different, especlally concerning the approach taken to solve the
transformed wave equations in a multilayered environment.
Traditionally, the depth dependence of the field has been determined
by means of the Thomson-Haskell matrix method[3,4] . The first model
was introduced by DiNapoli[6])], who evaluated the solution very
efficiently by means of recurrence relations for the hypergeometric
functions. However this approach allows only for fluid layers, and 1in
that case, other techniques, like normal mode methods, are usually
more convenient. The first FFP model, lncluding the coupling between
compressional and vertical shear waves at the boundaries of solid
layers, was developed by Kutschale[7] also using the Thomson-Haskell
method. The original model allowed for ornly one source/receiver
combination for each solution. [t has later been modified by
Harrison(8] to allow for several receivers, but even for one

combination the computations are rather extensive.

A more direct and computationally more efficient solution technique
was recently introduced by Schmidt(9]. The field parameters at the
interfaces are expressed in terms of source contributions and unknown
scalar potentials. The boundary conditions yleld a system of equations
in the Hankel transforms of the potentlials to be satisfied at each
interface. These local systems of equations are mapped into a global
set of equations using a technique similar to the one used in finite
elément programs. The computational speed has been improved by an
order of magnitude by wuse of this solution technigue. Furthermore
configurations involving several sources and/or recelvers can be
treated with one solution, thus yilelding the possibility of computing
total fields generated not only by single point sources, but also by

vertical source arrays. .

These and similar models have all been two-dimensional, thus
restricting the sources to be placed on the axis of the «cylindrical
coordinate system. A direct solution of problems with horizontally
distributed sources has therefore not been posslble, but has required
a new calculation for each source and subsequent superposition. In
this paper the model of Schmidt(9] has been modified and extended to

allow for sources displaced with respect to the axis.




The fleld parameters are expanded in a Fourier series in the angular
directlon, thus leading to an 1infinite number of two-dimensional
problems. By expressing the boundary conditions 1in terms of Cartesian
components, rather than polar components, the coefficlent matrix will
be 1independent of the Fourier order, and the Hankel transforms of all
the expansion coefficients for the unknown potentials can be found
with only one matrix inversion for each horizontal wavenumber. The

truncation point of the Fourier series can be de*ermined a priori.
The 1nversion of the Hankel transforms 1s again performed by means of
the fast field technique, and the angular distribution 1s evaluated

from the expansion coefficients by means of an FFT technique.

In the following the model and 1ts mathematical background will be

described.
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2.2 List of symbols
7] angular frequency
A Lame’ constant and wavelength
Y] fame ' constant
4] density
cc compressional wave phase veloclity
<, shear wave phase velocity
[ compressional wave potential
Y shear wave potentlial
A shear wave potential
3 shear wave potential vector
ﬁ particle displacement vector
u1 particle displacement 1in 1-direction
V particle displacement velocity vector
vl particle displacement velocity in L-direction
le stress in direction 1 applied to surface with normal
vectar k
S1k strain 1n direction 1 of surface with normal vector K
C;klm stiffness constants
6xk Kronecker delta
&(x! Oirac delta “function”
Jl(zl Bessel function of first kind, order 1
Nllz) Neumann functior of order 1

i
H(Z {z] Hankel function of second kind, order 1
K horizontal wave number

o vertical wave number for compresslonal waves

PPNy S
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vertical wavenumber for shear waves

tilde: denotes source terms

vector of parameters entering boundary conditions 1in
layer n for angular order m

vector of up- and downward- going potentials in layer

n for angular order m

. m m
matrix relating Bn to Fn in layer n, 1:=1l: lower
1=u: upper

source contributions in layer n, agular order m
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2.3 The homogeneous solution

The solution will be restricted to a homogeneous medium, hence the

environmental parameters are independent of spatial position.

Newtons second law of motion for a solid may be stated in a frame of

Cartesian coordinates using tensor notation as

2
BTik(xx,x ) 3 U, (x ,x )
dx : ¢ 2 tn
Kk at

The subscripts take on values from 1 to 3 indicating directions x.,y
and 2 respectively. Einsteln’s summation convention i e summatlion

over 1dentical indexes 1s assumed.

le 13 the stress tensor: stress in direction 1 applied to surface

with normal-vector k.

u1 1s particle displacement in i1-direction.

The spatial arguments of T and u will 1n the following be omitted, but

assumed tacitly.
@ 1s the density of the medium,.

(1) thus equates the faorce in direction i applied to an infinitisimal

volume element to its ilnertia in direction 1.

As the only forces acting on the volume element are the internal

volume forces, the volume is considered source-free.

The medium described by (1) 1s furthermore lossless. Viscous losses
can be i1ncluded by entering a first order time derivative term. A
discussion on the causality of timedependent solutlons when entering

losses 15 given in [17].
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The 1linear elastic material properties for a general solid may be

stated as

ik * Cikim Sim {2)

which is Hooke's law. The deformation is

o . l[ﬂl,ﬂ
m 2 " ¥x 3x 13)
m 1

We have the followlng symmetry relations

Tik N Tkl {4a)
Stm 7 Sm (4b)
Cikim ° Skitm © Sikmi T Clmik the)

(4a) follows as a consequence of the torsional moment vanishing at
equilibrium (181, (4b) is an obvious consequence of {3}, The three
first terms of (4c) are consequences of (4a) and (4b) respectively,

while the fourth term follows from thermodynamical considerations

[16].

T . i .

hus, clklm has at most 21 independent components

F _ . . Lo .

or kalm to be isotropic, it is reguired that [14]

cLklm : Aaik 6lm * uazl bkm * vaxm 6kl (5

h = 1 . =
{4a)timplies that u=v since Civlm ckilm

The constitutive relation for an isotropic solid 1is thus simplified to

be
du du du
- —1 —i —k
Tik ® %™ “[lax B, ! . (6}

-
le = 61k AVey ¢+ 24 Slk (7)
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The first two symmetry properties given in (&) state that both le and
sik are symmetric. If they furthermore are real, they may be written
as real symmetric matrixes which consequently are selfadjoint.
Diagonalization gives the stress and strain respectively along what 1s

termed the principal axes. Then [15]

T = AVeU s+ 243 (8)
¢l n

This form 1s valuable for giving 1ns.ght 1into the physical
interpretation of the Lame' constants. For a fluid where =0, A
becomes the bulk modulus. fFor a solid, the effect due to the principal

stress Tn would be a dillitation pluss an extension in the n-direction

It should be noted that the material constants which normally enter
into our equations are the adiabatic terms as we assume that

negligible heat is transfered to the medium,.

In order to combine equations (1) and (6), (B) is differentiated with
respect to xk and the common term eliminated. The result, rewritten in

V-operator notation, becomes

2 2%
e d -
(A+p)¥V.U + u?°0 = o '—; (38)
at
Use of the vector identity
- -+ 27
UxUxA = VVeA - TTA (10)

enables us to bring (9) to a commonly used form termed the equation of

motion for a solid isotropic homogenous lossless medium containing no

sources

2
yned - Cowwma - XL 3 (1)
[ s atz

where the phase velocities for compressional- and shear waves are

c2 s Arzu {12a)
< Q




"
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NP (120)
s e
respectively.
The introduction of the wave velocities at this stage 15 an

anticipation of things to come. It will be shown that these guantitles
are phase velocities and, 1indeed, phase velocities related to

compressional- and shear-waves respectively.

Separating the solution of (11) into a space- and a time-dependent

part, will imply a timedependent part of the form exp(sjwt) of which

-
expljwt) 1is chosen. The symbol U, up to now used to denote the time-
and space-dependent particle movement, will in the following, wunless

otherwise stated, be taken to mean Jjust the space-dependent part. This

should not cause confusion. (11) is thus reduced to

2 2

- 2 - -
. w.u - N Ixxu + w U = (13)

od

A common approach for further reduction of {13} {12]1[13] is to express

the solution as the sum of a longitudinal- and a transversal term i e

U=0,+10 (141
= +
Ty
where
-
vl 0 . {15a) -
-
U {15b)

Insertion of (14), (15a) and (15b) 1into (13) yields
czvv.ﬁ - CZVxVxﬁ + wzﬁ = B (16)
c L S T

We define
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-
= VU (17a)

=24
n
<3
x
[ =1

(170)

which inserted 1nto (16} yields

- _c ) _s »
u = - 2 Ved™ » 2 IxQ (18)

The vector quantity 1in the second term of (18) may be reduced to a

scalar by expressing the potential vector as

2

- -»

-
Q@ = Ya + VUxAa {19)

(‘.IE

where ; 1§ a unit vector. It 1s common practice in z-dependent media,
[33(43(7] to choose 3 ta be aligned with the z-axis. The displacement
components arising from ¥ will not have components in the 2z-direction,
thus representing a transversal shear wave which does not enter 1nta

the two-dimensional (range and depth) case.

The displacement may now be written

- - -
U = 94 + Ix¥2z + UxUxAz (20)
As (16) is a linear operator, here termed L, then

» » -+ -+
LU } = L(Vé + Ux¥z + UxUxA2) = 0 {21)

is equivalent with
- -+
L{Pé) + L{Ux¥2) + L{VxVxAZ) = 0 (22)

As the left hand side of (20} is obviously a vectorfunction of the
three spatial directions, it may be decomposed 1into three linearly
independent scalar functions. So must also than be the case with the
right hand side of (20) as well, the three scalar functions ¢,¥Y and A
are linearly independent. As each term of (22} 1is linearly
independent, they can at most be a constant. We will here 1in the
following reéstrict our attentlon to assuming this constant to be zero.

Thus, (22} 1s implied by
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LT} = @ (23a)

LITx¥Z) = D (23p)
-

LIPxPxAZ) = 0 123¢)

thus (16) 1s satisfied 1f

V(civzo + wzt) =0 {26a)
2 2
Vx(-cSVxVxV +w ¥) =0 (24b})
2 2
VXVX(-CSVXVXA + wA) =0 {24¢c)

The quantities within brackets of (24a) can at most be constant. As
sources at infinity are discarded, the radiation condition 1mposes
that ¢+0 when l;l*», thus implying the bracketed term beeiig 0. (24b)
and (24c) are clearly fullfilled if the bracketed terms are constant.
The same physical considerations as applied to (24a) are valid, thus
ylelding that the bfacketed terms vanish when I?l*w.

Application of the wvector identity (10} to the bracketed terms of
(24b) and (24c) bring these two equations to beeiny of <the Helmholz

type and in summarizing: 1f {(20) 1s a solution of (13), then

956 . nd 4 - 0 (25a)
Y . g% v : o (25b)
L S Y NI (25¢)

wher2 h and g are the wavenumbers for compressional- and shear waves

respectively:
Wz w’1
h2 = - = "ji‘—‘—*- 126}
} 2 Ao+ 2u
c
c
mz [*} wz
2
= - z ()7
9 I W )
[
[
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It has Dbeen stated (11), without beeing shown, that 1t 1s the
compressional and shear wave velocities that enter 1into (9). A

separable solutlon of (25) 1n a Carteslan coordinate system 1s

8ix.y,2) e AKX v Ky v k2] (28)

where

h2 = k2 + k2 + k2 (29)
X Yy r4

As all directions are equivalent, propagation in the x-direction may
be considered with no 1loss of generality. Inclusion of the

timedependent factor yields

st x) QIlut - ki (30}

For constant phase the argument of the exponential function 1is

constant, thus

X .o R
e h { ) = ¢ (31)
Similarily, a solution of (25b) and (2Sc) will yield

X . 0w | K e
vtk ! ¢ (32}

Application of (20) to (28) gives

- . jlwt - Kk x} =

U’ ]kx e X X (33a)
- Jlwt - k x) =

Uy, = jkx e X y {330}
U eIt - kxd g (33¢)
A X
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¢ represents a wave propagating in x-direction wlth phase velocity cC
and with particle displacement in the direction of propagation, while
¥ and A propagate in the same direction with phase velocity cs but

with particle displacements perpendicular to the propagation

direction.

1f ﬁ = {u__,u, ,u__} are the displacement components referred to a
n rn’' Bn'"zn

cylindrical coordinate system {r,8,z} in a homogeneous layer n, (13)

will be satisfied for (20) expressed in cylindrical coordinates as

3 1av 3%
_n n n

“tn 3r " ras ' 3raz tad)
136 dY 1% (35)
- n _ _2n - n
“on r 98 ar r 089z
24 13 d 1 a2
u = —2 - — r . _E ——; ) An {36}
N 32 r dr or r 36

where the potentials satisfy the homogeneous scalar wave equations

{25a), (25b) and (25c)

1f a solution where there 1is no 60-dependance is examined, it is
readily seen that both ur and uz are dependent wupon both ¢ and A,
while ug 1is dependent solely on Y. Previous models [3)[4]) had separate
uncoupled solutions for these two cases. The two-dimensional
realization based on ¢ and A could support compressional-, shear in r
and 2z plane- and surface-waves such as Rayleigh {vacuum-solid
interface) Scholte (liquid-solid interface) and Stoneley(solid-solid
interface). The one-dimensional realization was used to study
transversal shear waves (displacement in 6-direction) and chiefly Love
waves. These are transversal shear waves confined to a waveguide

limited by two interfaces.

The attenuation 1in the medium can be accounted for by allowing the
Lame’' constants and thus also the wavenumbers to Dve complex. This
follows from including viscous losses by addirg a first order
time-derivative term to (1). One must be aware when 1ncluding losses
in this manner and performing integration over frequency to obtain a

time-dependent solution, the answer may come out non-causal. A
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discussion of this problem 1s found in (17]. This point will, however,

not be gilven more attention here.

In order not to confuse, the index n referring to the layer number

wlll be implied 1n the rest of this section.

A set of solutions of equations (25) of the separable form

*(r. 0,2z} = Rir) 6(8) Z(2) (37)

1s sought. This ylelds the seperated ordinary differential equations

' + m 6 = 0 (38)
F AR h2 - kz) Z = 0 (39)
rzR" + R« (kzr2 - mZ)R = 0 (40)
wlth solutions

91(m8) = cos(md) {hia)
92(m8) = s1n(m@) {41b)
Z,(k2) eratkiz (+2a)
Z,(kz) Stz (42b)
Rm‘(kr) = Jm(kr) (&43a)
Rmz(kr) = Nm(kr) (43b)
respectively. m 1s taken to be 0,1,2,... as the boundary conditions

are periodic in 6. Jm() and Nm() are the Bessel- and Neumann functions
of order m respectively. The Neumann function solution {(43b) will be
discarded as it has a singular point at the origin. This wlll be given

further d: ission under numerical integration.

The solution (37) becomes an angular expansion of the potential

functions
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sir.8,2) = [ o™, z) cos(m®) (44}
sin{m@)
m=0
Air.8,2) = L A"(r,z) costmd (45)
sin(mB}
m=z0
¥(r,0,2) = L Ym(r.z) sin(mé) (46)
~cos(m8)
a=0
where
¢Mir,2) = I[a?(k) g 23K, a?(k) LI 3, (rk) ak (471
]
A"r.z) = JeT e 2RIk by (k) Q2B 3 (k) dx (48)
Q
ez s [ e PP L Mg @B g (ri ok (49)
0 1 2 m
(- w2 Retn?y
als) = {50}
302 kA2 ¢ CRetn®)
I VL N SN S
Bls) = (51)
ita? - W2 ¢ Retady

The displacement components uz ,ur and u8 are expanded according to

ur.8,2) = 1 uMir,z) Sosimd) (52)
r r sin{md)
m=0
r
_ S om sini{md)
uglr.8.21 = mfn ughr.zdl o ime) (53)
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cosi{md)

sin(mB) (54)

Worm 8

u (r,8,2) = W"ir.2)
2 Z

m=0

1f we derive the quantities ur and u9 by a direct application of the
operator defined by (34),(35) on (4&),(45) and {47),(48), we would, as

we take into account

L 5 (sr) o= s3- (s 3+ T3 (sr) (55)
dr m m+ 1 r m

obtain results with different orders of the Bessel functions. It 1is,
from a numerical point of view, desirable to have Just one Bessel

order in each equation.

If we form the linear combination of (34) and (35) with (52) and (53)

as sum and difference, we get

r - 8
; {um cos(m8@) . m sin(m8)
meg ¥ sin{mg) — "8 -cos(md)
T T A I E A
dr r a8 3r r a8 3z dr r 98
. ; { 9 ;omym sin{mB)
m=0 ar . -~cos{md)
S ( 3 ;om m cos(mf)
ar . sinim8)
L ( 3 Dm AT sin(md)
dz ar R -cos(m8)
(56)
when we use the notation defined 1in (44) - (49).

We observe that the partial differentiation operation pith respect to
B applyed to the expresslions for ¢, ¥ and A: (44) - (49), leads to a
constant m {and of course alteration of the sine- and
cosine-functions), so that the partial differentiation aoperator

becomes equivalent to the operator defined by
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d - m
a_ m . - r
( ar °* - )Jm(sr) st‘ 1(s )
Hence, we have only one Bessel order for

negative-llnear comblnations respectively.

(57}

the positive- and

The trigonometrlc expansich given by (56) wlll of course be the same

for all layers, differing only by the expansion

coefficients. It is

therefore sufficient to meet the boundary conditions 1n terms of the

expansion coefficients

which, when [{47)-149)) 1s 1nserted becomes

SR 8™ (58
r

WM, z2dedTir,2) = f1a™(s) s e 20s) T Mgy ¢ Q2!

r -8 a 1 2

e oTis) sy @ PN T 0s) gy 27R1S

. cm(s) s e-ZB(S) + cm(.) s ezB(s) 1 s (rs) ds (99)
1 2 m + 1

The coresponding development of uZ comes considerably easier as we

observe that the part of the differential operator (36} which operates

on A 1s - (3/62)2. which by (25C) becomes

2 2
V2 - Q‘; A = -Ig2 * 2 2 ) A (60)
92 9z
30 that we can write
i .
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ir.z) = I[~aT(s) als) e 2018, a?ls) als) eZ2(s!
z 0
’bT(s) s 9—26(5) + bg(s) S ezB(S)]s Jm(rs) ds (81)

The following boundary conditions at the horizontal interfaces involve

the stress components T T and T_ . If these are expanded like
zz' rz 8z

{¢4), 145) and (46} respectively, wuse 0f Hooke' s law leads to the

following expressions for the expansion coefficients

m 2.m 3 m
TZZ(r,z) = AV 4 {r,2z) + 24 3z uz(r,z)
= wftalieo (2k2-g%) o 24K L L g? al (k) Q2e k)
1]
- k
-oTtk) 2 K BlK) e 2B k) b?(k) 2 k By Py 3 (rk) ok (62

™o,z T iz s
rz - 8z
(S WMz s WMirzi) s (é— B WMz
MU 3 MUt - g dr r z
: uf[taT(k)zka(k)e'z°‘“’ : a?(k)zku(k)ez“‘k’
0
o™i 2kl-gte BRI b?(k)(Zkz-gz)ezalk)
b - k
ThakB ke 2Bl c?(klke(k)eza( Mk I g LKOD ak (63

It snould be noted that the use of the linear comblnations (58} and
{63) 1n the boundary conditions rather than the components has the
effect that all <coefficlients relating to the wunknown arbltrary
functions (a',az,b‘.bz, c‘and cz) w1ll be 1independent of the Fourier
order m. This 1s obviously very important for the efficiency of the

numerical solutian.
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For fluid layers only the potential $(r.8,z) will be present, and the

expansion coefficients for the displacements are optained directly

m
¢rom '61) and (591 by setting b? .bg Sy and cg to zero. The shear

stresses vanish jdentically, whereas {62) has to be replaced by

™ rzy = avieM(r.z)
z2

o

NS j[a"“(kxe'z““"»a"z‘mez"“"] k 3 (rklgk (64}

Q
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b So e field

A simple compressional source placed at the point {’1'91'21} will

produce the following field in an infinite homogeneous medium, [9]

¢ (r.0,2) =

1

Si B o -alk)|z-2z |
== L[ e cosm(8-8_}f[J (r k) ————— 1kJ (rk) dk (65)
[3.{"] meg ™ iy md alk) m

where Si 1s the source strength, which i1s generally complex to account
for the actual phase of the source. The factor sm , due to the

expansion of the exponential function in a Neumann series [9]. is
€ = (66)

If more than one source 1s present within a layer, the contributions

are simply added to yield

$ir.8,2) =
, - « N -u(k)lz-zll
—~— L e JL LS. cosm(8-8 }J) (r k) 1 kK J (rk) dk
brw m . 1 1L m i alk) m
m=0 0 i=1

(67)

where N is the number of sources. The potential #(r.89,2) is now

expanded like (44) and the coefficients are easily obtained as

om(r,e,z) =z

€ N cos(m8,) -alk)[z-z |

Sm T i
e JL DS sin(mg. ) Iplrik)

k Jm(rk) dk (68)
0 1=1

alk)

The expansion coefficients for the Carteslan displacements components

follow from ((52),(53) and (541})
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GJir.2) z
z
€ e N cos{mB )
m i _ -~alk)|z-z.
© Tre ft s, sign(z Zi) Jm(rlk) e i ]kJm(rk)dk

0 i=1 * sin(mai)

(69)
um(r.z) [ um(r,z) =
T 8
€. N cos(mBi) -~alk)]z-z | (70)
s = k)dk
Tt I[s‘Z Si A Jm(kr.) (k) 1 k Jm‘1(r )
0 1i=1 51n(m8i) -

and use of Hooke's law yield the following expansion coefficients for

the stresses involved in the boundary conditions

-

™ir,2) =

2z
Ye o N cos(mB.) ~alk)|z-2z. |

e 1
—B reak?-g?) L os Dyqkry 8 WD _trk) dk (71)
(3] : m 1 aik) m
0 i=1 sin(m8 )

™ {r,z) + ™ (r.2) =

rz - Bz

UE = N cos{mé ) _ _
« —2 ffek T s, signtz-z ) 3 tkr e 222 s g
- bdTw i 1 m 1 me 1

Q 1=1 sxn(mﬁl) -
(72)

In the case of 3 fluid layer eq. (71) must be modified to
™ (r.z} =

2z

Ahzcm w N cos(msx) —alk)|z-2z |
T mw 1 Si . Jm(erl alk) )k Jm(kr) gk (73}

g 1=1 sxn(mﬂl)

Here only simple compressional sources have been considered, but shear
wave sources, involving the potential A or ¥, can be treated 1n
exactly the same way, leading to integral representations similar to

eqs (69) - (72) for the field parameters.
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2.5 Solution technigue

2.5.1 Numerjcal integratjon of the Bessel transform

The 1ntegrals of ({(47),(48) and (49)) may be written in a simplified

manner as

I 6tx) I, (kr) dk (74)
0

The Bessel function may be written as the sum

23 (2) - w2 W' (g (75)

n n

where Hﬁ’l() and HLZ)() represent the Hankel functions of first and

second kind, order n respectively. For the time-dependent solution
choosen here (exp(jwt)), the Hankel functions of first and second kind
represent 1in- and outgolng waves respectively. As there are no
backscatter elements 1ncluded in the model, the Bessel function may be
approximated by the Hankel function of the second kind. This
approximation 1s of course not valid iIn the region between sourcels)
and the center axl1s. Otherwlse the validity of this approximation is
discussed in [5]. The Hankel function 1s substituted for 1ts large

argument approximation as given by

v hid
1 _ v 1
P L R B (16)
v nz
We will evaluate the 1integral at discrete steps according to
k= ku + nAk n = 0,1,2, ... ,N-1 (717a!
r = ro + mlAr m=0,1,2, ... .N-1 (T7b)
AkAr = 2®/N (77c¢)
Insertion of (76) ang (77) 1into (74), and substitutiry order of

1ntegration and summation yields .




: .o yr
1y 2 )t/2 Ak e*](kor -3 5 )
2 nr
N-1 ~qndkr 2n
e i =30 2 am )
L G(kD + Nk} T ‘*"775 e N (78)

n=Q (k0 s+ nlk)

This expression is clearly a preweighting of the integrand and
thereafter a discrete Fourier transform. It is evaluated by means of

the FFT algorithm, and thereafter postwelghting.
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5.2 The obal] matrix method

Solutian of the problem at hand implies finding the values aof the
potentials a,b and ¢ that satisfy the pertinent source and boundary
conditions.

At each 1interface uz and TZ2 must be cantinuous. At solid/solid

interfaces we must 1n addition require that u and Tez be

up T
r'8' rz
continuous. At solid/liquid interfaces the shear stresses must vanish.
We express these boundary conditions with {(34), {35}, (36) and the
expressions for stresses obtained by the use of Hookes law. These
boundary conditions may readily be reformulated in terms of the
angular expansion coefflcients which, when collected in a column

vector become:

[ u:(r,z) ]
um(r,zl‘um(r,z)
r 8
WTir 20, 2)
m r 8
Fiir,z) = m (r.z)
2z
™ (r,2)+1" (1, 2)
rz gz
m m
T -
| rz(r'Z) TBz(r'Z) i (19

The unknown potentials are so defined that the cdepth coordinate 2z
within this layer is 0 at the upper 1layer interface. The boundary
conditions at interface n which is the lower interface of layer n may

thus be stated:

m ‘m m ”m
Falr.z ) s Fllriz ) - F o (x.0) - FO (r.0) = ¢ (80)

where subscript n denotes the laver number, zn danotes the thickness
of layer n and the terms with tilde - as befote‘denotes source terms.
Insertion of (61}, (59), (62) {(64) in the fluid case} and (63),
interchanging order of integration and summaticn, reduces (80} to a
set of integrands which must vanish. Thus we are left with a set of
linear equations in the unknown potential functions and the source

contributions which becomes
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m m m m
- - R )
An,l Bn Anvl,u n+1 n+t,u n, 1 191)

where the unknown potentlial functions for layer n are

~ -

w0
x

[=3
3

783n3 -3 -3 3
=

3

O
x

=

w
x

2

a3
o
x

[l
=

~N T
3

L ‘ J (82}

For a solid layer the matrix A for the upper interface in layer n is

An‘ (k) =
[ -a K 0 a K 0 }
-k B K -k -8 K
k -8 K k [ [
(2k?-g%1u ~2xBp 0 (2k%-a%)u  2xpp 0
2kay -(2k2-gz)u ~kBy -2kay -(Zkz-gz)u KBy
L - 2kay (2k2—gz)u -kBy 2kay -(2k2-92)u KBy

- (83)

while for a ligquid layer, the matrix becomes

A (k) =
n,u

-a 0 9 a 0 o ]
-k 0 0 -k ‘0 0
K 0 0 K 0 0

-An? 0 0 -An? 0 0

0 0 ] 0 0 0

0 0 0 0 8 0 J 1841

The matrix for the lower 1nterface of a layer 1s obtained by
multiplying each element with the appropriate exponential as given

by (61) - (64} with z:zn 1 e:
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An.l(k) z An,u(k) In(k)
where
In(k) =z
e-u(k)zn 0 0 0
0 e-B(k)zn 0 0
0 o TRz, 0
! 0 o LalkIz
g Y 0 0 0
1 0 0 0 0

The source contribution vector 1is

m € N cos(mé ) alz
R, = T L 55 I ke ) e °
Amw 1=1 sxn(mﬂl)

0
0
]

0
eB(k)zn
0

r
_211

L

-sqgni{z-z )
1
-k/a
ki/a

p(Zkz-gz

I
2kusgn(z-z )

-2kusgnlz-2z

)
1

(85)

(86)

(871

where z:=0 and zn for upper and lower boundarles respectively.

Finaly the 1local sets

set of eqguations

Y N .

of boundary squatiuns are mapped into a glubal




m [ m
R
R2.u 1.1 l
m m
R3.u R2,1
m m
RL,u N R],l
m m
R
RN.u L N-1.1 |

The global matrix method,

presented 1n [9].
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‘3 -3

(88)

as opposed to matrizant methods{3] 1s
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2.3.3 Nuymerical considerations

A commonly known problem with the matrizant method on which FF? models
have been bas:d{3]. 1s encountered when dealing with thick lavers in
the evanescent region of the horizontal wavenumber spectrum. The wave
amplitudes., represented by depth dependent exponential functions with
positive real arguments, may attaln large values. It 135 of course
obvious from physical consideratigns. that the energy content cannat
3row Dbeyond finite values, so thls situation must be considersd as a
numerical artifact. Several technigques are wutilized tu remedy this

sltuation.

The matrices An N and An S are made dimensionless by dividing the
stress- and pressure-related coefficients by w“gn andg by the

horizontal wavenumber respectively. Qn dencotes the density of an
1ntermediate layer. This will ensure that the coefficients are within

the same order of magnitude.

Each layer 1s described 1in a separate local coordinate system with
O0rlgin at its upper surface. This will ensure that the value of the

depth does not exceed the layer thickness.

The order of potentials, as defined by (82) ensures that the
coefficlents, which attain high values due to the above mentioned
exponential functions, come c¢lose to the diagonal of the global

matrix.

These remedies will. together with standard Flvoting by columns,
ensyre that the solution of {B88) by means of Gaussian elimination,

willl be uiconditionally stable(7].

The above statement must, however, be slightly mcdified when we have a
source 1n a thick layer with evanescent propagation conditions.
Numerical 1instability due to the nonvanishing pertinent row of the
righthand side of (88), may occur. This problem 1s easily clrcumvented

by 1ntroducing dummy-interfaces just above and below the sourcels),
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Coherent sources on both sides of a thick layer may also represent a
numerical problem, but as this situation i1s regarded as being less
important 1n most physlcal applications, 1t 1s not considered a
serious limitation, It 1s of course possible to solve the problem

separately for both these sources and superpose the solutions.
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2.6 Numerical example: a point source in free space

The example of a polnt source in free space 1s a well sulted example
for verification of the model as the correct result 1s readily
calculated as 20logl(r). Free space means a water layer, containing
source and receliver, surrounded by wupper- and lower-halfspaces

conslsting of water wlth 1dentical parameters.

This example 1s. however., rather a challenge for the FFP model. as the
1ntegrand easlly becomes undersampled due to the branchpoint arising
from the square root Ln the denomlnator of (73) (the reader 15 also
referred to (50)). Hers, the 1l.tegrand 1s sampled at 8136 points

-6 -1 -1
ranging from 628 xI0 m to 0.465 m

Figure 2.1 shows a comparison between model outputs with the source
located on the center axis and also with the source displaced 100 m in
positive x-direction from the center axls. 1L e the model 1s run'in
two- and three-dimensional modes respectively. In both cases the
frequency 1s 100 Hz. the receirver 1s located 40 m above the source.
The three-dimensional case required an angular expanslon order of 110.
Curves a and b show the transmisslon loss for the two-dimensional- and
three-dimensional-cases respectively. The region of validity for the
computed solutlon begins at a greater distance from the source in the
three-dimensional case, as the approximation to the higher order
Hankel functions has larger remainders than what 1s the case for the
0-order approximation. The computed solution 1s of course not valid
between the source and center axis as only c:¢he Hankel-function
corresponding to outward propagating waves 15 1included. Figure 2.2
shows the computed transmission loss 1n all directions for the

three-dimensional example. The line markers xz0 and yz0 are drawn.
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371 NVER PR

3.1 [ntroduction

The objective for solving the ainverse problem 15 to determine the
parameters which have significant 1nfluence on sound propagation 1n
the water layer(s}! 1n a shallow water environment. Determining the
parameters within "acceptable” confidence bounds. will =anable us to
model their effects and thereby predict sound propagation in the water

layer under the 1nfluence of the ocean bottom.

To my knowledge. there has not been any earlier reports of attempts to
infer ocean pottom parameters based on the methods to be wutilized

here.

There 15 no commonly accepted definition making a clear and conclse
distinction between deep and shallow water. The term “shallow water”
is used here to 1imply an acoustic environment and an acoustic
wavelength sufficlently large (with respect to cwepth) that sound

propagation 1s suited for modelling by wave theory.

While sound propagation 1n deep water 1s well handled by ray theory,
multiple reflections 1n the shallow water situation treate a rather
complicated ray pilcture. If we.,as here. limit ourselves to a
horizontally stratified medium, multiple bounces may interfere
constructively or destructively, and thus show a resonator effect.
This effect 1s. as will be demonstrated. readily described ain the
fregquency-horizontal wavenumber (F-K) domain. A prnjection of the
signal space occuring 1in a horizontally layered medlum into the F-K
domain will readily show modes of propagation, their phase- and group
velocities, cut off frequencles and also 1mportant fteatures of the

ncean battom,

The term "mode” 15 used in a More free sense than 1n mast ¢ the other
literature. Here 1t 15 taken to mean the locl of points 1n  the F-K
domain where <constuctive 1interference occurs. not lim:ited to :he

discrete region of the K-spectrum. The term “normal modes’ tnarmal o=




37

orthogonal) does not enter 1nto this discussion as we do not define an
dppropriate 1nner product onto the observation space. Element: of such

an inner product space would be values as a function of depth.

The nomenclature for characterization of interface waves 15 adopted
from [18]. A Rayleigh wave can occur on the interface between a solid
and vacuum. a Scholte wave between 2 solid and a liquid and a Stoneley

wave on the interface between two solids.

A sultable observation space for projection into the F-K s3pace 13 a
horizontal array. In this work. data from a seismic research vessel
towing a super long air gun array (SLAG) and a S2-element hydrophaone
array 1s used. not because this particular configuration 13 i1deal for

Gur purpose, but because 1t 15 avallable.




38

3.2 Some basic operties of a mgnola wavegu

It 1s not  1ntended that this chapter shall be  an  exhaustive
develpoment of waveguide theory. The purpose 135 just to establish some
fundamental properties which wlll aid wus 1n understanding how to
interpret an F-K diagram. The complete theory 15, of CouTrse. covered

implictly 1in the previous secticn on the forward problem.

upper half space - vaguum

intermediate layer - water

J
|

ocean bottom

~d

lower half spage - gcean bottom

L _

Figure 3.1 A monolaver wayequide a and a refer to equatiun [54)

The essential elements of a water layer bounded by surface and ocean
bottom are shown 1in figure 3.1, Refering to equation {64), the daepth
dependent npart of the <ceparable solution consis®s of an up- and
downward propagating compunent. The boundary conditiuns are equlvalent
wlth reflections occuring at the boundaries. Constructive interf-rence

between 4 and i, will occur when
2
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30 { @ () -32alw, k)z
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eje (o) are plane wave reflection coefficients and p 15 Q

where R (@)
characteristic angle, either inclident or grazing. The subscripts s and

b refer to surface and bottom respectively. {(83) 15 equivalent to

R R = (90a)
5 b
and
0+ 9 - 2az = (1-p)2m,. n = 0.1.2.3,... {32n:
s b
{90a) 1mplies a lossless medium and totally reflecting boundaries.
corresponding to a resonator with an 1nfinite Q-factor. This 13 of

course an approximation. We will not dwell upon 1ts validity, as the
purpese for 1ts application 1s to establish a fenomenologlical
framework for a basic understanding of waveguide properties. (30b) 1s
a resonance condition. As an  approximation. we will assume the
reflection «coefficient at the surface tu be -1 for all ¢. The
reflection coefficlent, as well as the 1mpedance., for the ocean bottom
represent 4 neccessary and sufficient descraiption of the i1nfluence of
the ocean bottom properties on sound propagation 1n the water layer
for a horizontally stratified medium. The effect 5f more than one
ocean bottom layer may be collected 1n the ocean bottom reflection
coefficient, but 1t then becomes a function of both frequency and
horizontal wavenumber as reflections are related to incidence angle

and propagation between boundaries 1s related to vertical wavenumber.
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3.3 A e

Figure 3.3 shows an F-K diagram of a test case wlth parameters as
shown 1n figure 3.2. The source i1s 7.5 m- and the receiver 15 14 m
nelow the ocean surface. The diagram 1s the module of the prewerghted
1integrand given by (78). Radiating from the origin are flve line
markers which 1n descending order of phase velocity (w/k} 1ndicate the

lowr of puints constituting constant:

cumpressional wave phase velocity 1n the ocean bottom
-shear wave phase veloclity in the ocean bottom
-Rayleigh wave velocity at the ocean bottum interface
-compressional wave phase veloclty in the water layer

-5cholte wave velocity at the water/sulid interface
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|
|
ypper half space - vacuum
N m
intermedjate layer - water
comp. wave velocity : 1500 m/s
density : 1000 kg/m
attenuation : standard
50 m
luw half 3 - n m
comp. wave velocity : 4000 m/s
shear wave veloclty : 2000
3
density : 2000 kg/m
comp. wave attenuation : 1 dB/A
shear wave attenuation : 2
i

Figure 3.2 Environmental parameters for single bottom layer test case

Cn the ordinate axis kz0. 11 the order of increasing fra2gueniy. the
0.. '.. 2.. 3. and Jjus%t varely the &, mode may be 1aentified. The ],

made originates at the origin.

Figure 3.4 shows module and phase of both reflection coefficlient and
agcean bottom impedance for the same test case. The lott column from
top to bottom shows module of reflection coefficient 1ncluding the
evanescent region, module of reflection <coefficlent excludlng the
evanescent reglon and finally the phase of the reflection cueffiirent
including the evanescent region. The right column shows module and
phase of ocean bottom impedance, both including the evanescent reglion,

For abscissa the horizontal phase velocity 1s choosen as 1t offers an



-
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2asy comparlson with the characteristic velocities of the environment,
The horizontal phase velocity relates to various alternative

parameters as

c c
T
h k sxn(wl) cos(wg)

1 (91)

p

where wl and wg are incident- and grazing angles respectively and p 1s
slowness.

Figures 3.5 to 3.10 are identical to figure 3.4, except for the broken
lines which 1ndicate persurbation of environmental parameters. In
order of appearance, the effects of the following parameter variations
are shown:

-compresslonal wave phase velocity i1n the water layer

~compresslional wave phase veloclity 1n the ocean bottom

-shear wave phase velocaty 1n the ocean bottom

~density in the ocean bottom

-cumpressiunal wave attenuation in the ocean bottom

-shear wave attenuation rn the ocean bottom

The source and receivevr are locatec fairly close to the ocean surface,
A5 we are dealing with a homogeneous water layer., there 1s no lnherent
mechanism for trapping acoustic energy 1n a channel close to the
surface, hence energy produced by the source and detected by our
receiver will be 1influenced by bottom properties and constructive

interference as i1ndicated by (89).

The 0. and the higher order modes willl be commentrd on separately. as

their behaviour differs.

3.3.1 The 0. mode

The 0. mode originates at the origin, 1t has no proncunced low
frequency cut-off. At the origin, where w and s approach zero, the
vertical wavenumber ((50).(26)) aproaches zero. As the depth 1s
constant., az 1n (90b) may be taken to be zero, thus, for n=0, the

phase of the bottom reflection coefficient approaches n,
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As 15 well known, the Rayleigh wave occurs at the interface between a
solid and vacuum. In the solid, 1t 1s evanescent 11n the 2z-direction
and 1s thus a surface wave with horizontal wave veloclity below the
free shear wave velocity of the solid. For a liquid/solid 1interface,
The Rayleigh wave becomes a pseudo-Rayleigh wave: 1its horizontal phase
veloclty becomes complex. For a vacuum/solid interface, a Rayleigh
wave 1mplies vertical displacement and vanishing normal stress at the
solid/vacuum interface: vanishing impedance. The curve for module of
ocean bottom impedance in figure 3.4 shows a dip at what 1s here the

pseudo-Rayleigh wave horizontal phase velocity: 1865.6 m/s.

From the graph of the ocean bottom reflection coefficient 1n figure
3.4, it can be seen that while the module has a dip at the Rayleigh
velocity, the phase equals -w. Solution of (30b) for n=0 requlres that
the vertical wavenumber 1s equal to zero. Returning to figure 3.3, we
can see that as the 0. mode developes from the origin, at a phase
velocity asymptotically equal to the Rayleigh wave velocity f{actually
figure 3.3 does not show this acuratly, but a detail of this corner
near the origin would), its energy content increases due to 1ncreasing
module of reflection coefficlient, For increasing frequency, figure 3.3
shows the phase velocity to decrease and go below the water velocity
and approach the Scholte wave velocity. From figure 3.4: as the
horizontal phase velocity decreases from <the Rayleigh wvalue, the
module increases and the phase increases through a peak and returns to
-T at the water wave velocity. Again, we have a solution where the
vertical wavenumber o 1s 2ero, but now because the horizontal
wavenumber equals the wavenumber of a free plane wave 1n water. In
further decreasing the horizontal phase velocity, we come into the
evanescent regiron, characterized by a real (pure real for a lossless
medium) vertical wavenumber., As we enter into the evanescent region,
the acoustic coupling between surface and bottom diminishes, and the
0. mode fades out. Obviously, if properly excited, the 0. mode will
transfer energy into a pure Scholte surface wave. The Scholte wave
velocity 1is for this case 1399.2 m/s. Figure 3.4 shows a strong peak

1n module of reclection coefficlent at the Scholte wave velocity.




44

Now having given an outline of the basic mechanisms of the 0. mode,
we can use the perturbated reflection coefficients of figures 3.5 to
3.10 to look 1nto how variation of the environmental parameters

manifest themselves.

As 1s well known, the Rayleigh velocity 1s governed by properties of
the solid, while the Scholte root is governed by water properties as
well. For more details, the reader 1s referred to appendix ! and also

to (18].

The location of the dip in module of reflection coefficient at the
Rayleigh wave wvelocity 13 highly dependent wupon the shear wave
velocity, figure 3.7, and barely upon compressional wave velocity,
density and shear wave attenuation. The dip value, however, 1s

strongly dependent upon the shear wave velocity and attenuation.

3.3.2 The higher order modes

The higher order modes (n=1,2,.. in {90b)) have the same general
behaviour and will therefor be commented upon <collectively. It 1s
found advantageous to divide the higher order modes 1nto separate

regions characterized by the horizontal phase velocities as follows:

-continuous region: cC < vh { o
-1ntermediate region: c < v <¢c
s h c
-discrete region: c < v <cC
w h s

As mentioned earlier 1n this chapter, the F-K plot in figure 3.3 1is

separated into these regions by the line markers.
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The c¢ontlnuous reqlon. For the continuous reglon, we note that,

contrary to the 0. mode, the higher order modes have a low frequency
cutoff. This 1s clearly seen 1n figure 3.3 where the modes originate
from the axi1s sz0. For s=0, the vertical wavenumber «a becomes w/c.
From figure 3.4 and figures 3.5 to 3.10, 1t 1s seen that for this
region the phase of the reflection coefficient equals zero for all

parameter varirations. Consequently, (90b} simplifies to

o le

z = %(2n-1) , n=1,2.3..... (92)

As the horizontal phase veloclty 1s greater than the compressional
{and of course the shear) velocity of the ocean bottom, energy 1s
leaked 1nto the bottom as both compressional- and shear waves, and we
do not have a trapped wave 1in the water layer. Consequently, the
transmisslon 1loss 1s so high 1in this region that it 1s usually
consldered as non propagating. It should be noted, however, that for
this test case, we are considering a hard ocean bottom with
significant impedance contrast between water and hottom. Hence, even
for the <contlnuous reglon, the reflection coefficient 1s appreciably

high.

Whlle, as a function of aincreasing horizontal wavenumber, the
horizontal phase velocity decreases from infinity, the group veloclty
(dw/ds) 1increases from zero. For this region, the 1increase in group
velocity 1s caused solely by variations in frequency and horizontal

wavenumber such that the vertical wavenumber a remains constant.

For the continuous reglion, the module of reflection coefficient 1s
dependent on the 1mpedance constrast between water ana solid, hence
the phase velocities and density. As the phase remains unchanged,
these parameters do not influence the loci of maxima in the F-K

gomain.

Hor nta ha velocl 1 o0 _ocean bottom compressional
veloclty.

The highest wvelocity 1line marker 1in figure 3.3, 1ndicating a
horizontal phase veloclity of 4000 m/s equal to the compressional wave
velocity of the ocean bottom, passes through peaks: one for each of
the higher order modes. These peaks are clearly seen as a peak 1in

module of vreflection coefficient 1n figure 3.4, Figure 3.6 shows how
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the peak "follows™ ocean bottom compressional wave velocity. Figure
3.7 shows how its shape 18 1influenced by ocean bottom shear velocity.
It should also be noted that the peak 1s slightly influenced by ocean
bottom compressional wave attenuation, unaffected by ocean bnttom
shear wave attenation and also that it is approximatly at thlis polint

the phase of the reflection coefficlent begins to differ from zero.

Intermediate region.

In the intermediate region, free propagating shear waves may be
coupled 1nto the ocean bottom, while compressional waves undergo total

reflection. The group veloclity increases significantly in this region.

Horizontal phase velocity equal to ocean bottom shear velocity.

When the horizontal phase velocity equals the ocean bottom shear
velocity, the bottom becomes totally reflecting. Hence neither
compressional- nor shear waves are coupled into the ocean bottom as
free propagating waves. According to [!], the group velocity -equals

the phase velocity: the ocean bottom shear wave veloclty.

Ihe discrete region.

The discrete region, so termed because the horizontal wavenumber
spectrum for a given frequency becomes discrete and contains the
propagating part of the energy. As nelther shear- nor compressional
wives are transmitted 1nto the ocean bottom half space, all energy 1s
trapped 1in the water layer: we have a wave gulde effect. In this
region, the phase veloclity converges from above- and the group
velocity converges from below to the phase velocity of the water

layer.
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J.4 Descraiptjon of data collection and system response

The measured data have kindly been supplied by the Norweglan Petroleum
Directorate. They were gathered by the selsmic .essel M/V Malene
@stervold operated by GECO. The source was an airgun array and the

recelver was a sersmic streamer, both towed behind the vessel.

The data were collected on 31 July 1979, north of Bear [sland: 75 ?0'N
IGDSU'E. This area 1s characterized by 1its hard bottom, thus 3Jiving

rise to multiple reflections between ocean-surface and -bottom.
The data are 1dentified as line 7520-79 shots nr. 9131 to 92396.

The streamer 1s towed at 14 m water depth. It consists of 52
hydrophone groups, the distance between their centerpoints are 50 m. A
group 1s formed of two subgroups each of length-22 m and consisting of
32 equlspaced hydrophones. The spacing between subgroups 1s 3 m. The
si1gnals from each hydrophone within a group are summed without

welghting.

The hydrophone group separation, 50 m, implies a spatial angular

-1
sampling rate {wavenumber) of 0.126 m and a Nyquist rate of D.063
-1
m .

When taking the effects of the ocean surface into account as the

Lloyd-mirror eftfect, the modulus of a horizontal wavenumber respons

becomes
- INY .
-32r
I (e ety s e (31)
e Y

where

Y = b (941
N LA AL (95)
1 M 1

and & 1s the hydrofon spacing {(22/31 m), A 15 the distance between the

first hydrophones 1n a subgroup {(25m), N 1s the number of hydrophones
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wlthin a subgroup [(32) and d‘ 1s the numinal streamer depth {(1&m).

The signals from each group are sampled successively at a rate of 250
Hz. There has not been performed any filtering in the low freguency
end of the signal spectrum, the high frequency end has been filtered

through a low-pass flilter 3 dB down at 64 Hz decaying 72 dB/octave.

The distance from the source centerpoint to the middle of the first

hydrofon (offset) 1s 180.75 m.

The source has been towed at a nomlnal depth of 7.5 m. The airgun
array was fired every 50 m. The frequency spectrum for the source 1is
shown 1n figure 3.12. 1If we assume the source geometry deplcted 1n
figure 3.11 and 1include the Lloyd-mirror effect, we obtain the modulus

of the source horizontal wavenumber spectrum as

5
Woos ] (e e 3y p Q385 {96)
SO
iz
where
w, 2 2.1/2
r,e s%) d (ar)

61 denotes the distance from first to 1-th. source and d2 the source
depth. The effects of source spacing transversal to centerline of

ship's track have been disregarded.

Multiplication of (93} and {96) gives an estimate of the modulus of
the horizontal wavenumber respons of the data collection system. This,
together with a pirecewlse linear approximation of the source frequency
spectrum, 15 shown 1in figure 3.13. The response 1S normalized with
respect to total power. Figure 3.13 a shows a surface plot on a linear
scale, while figure 3.13 b shows the same data 1n a contour plot on a
logarithmic scale with S5 dB between contours. Lloyd-mirro. effect of
source and streamer appear as a null radiating from the origin to
{0.12,28} while tn; null originating in {0,51} 1s caused by the
streamer. The corresponding null produced by the source falls outside
the figure bounds. The source sidelobes are seen as maxima and minima
at constant k-values. The streamer produces a first minimum at a
horizontal wavenumber of approximately 0.12 m—1 and therefor acts as a
spatial low pass filter with first minimum at twice the Nygulst

frequency.
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3.5 Preprocessing and display of measured data

In order to bring the measured data on a form comparable to the model
output, inverse weighting corresponding to the post-FFT weighting
given 1n (78) 1s performed. I+ has been experienced that 1t 1s an

advantage to Hanning weight the data in the X-direction.

A two-dimensional FFT 1s performed. The FFT lengths are 64 points 1n

X-direction and 1024 points 1n T-direction.

The displayed data 1s 1limited to 60 points i1n K-direction and 250
points 1n F-direction. It 1s common within the selsmic community to
display the K-direction showlng both positive- and negative values of
horizontal wavenumbery, but as we have good signal o nolse ratlio, 1t
1s fair to assume that energy propagation 1n positive direction (from
source and aft along array) 1s dominant. This agrees well with the
analyzed data. We have therefore displayed the first 60 polnts 1in
K-direction 1n the order of increasing FFT-bin, The frequency
direction 1s limited to 250 points as we do not have significant

energy content above thls fregquency.

A normalization based on a total power content 1n the displayed data
to he equal to unity 1s performed. The amplitude of the F-XK spectrum
1s displayed on a linear scaled surface plot and a logarithmic contour

plot with 5 dB between contours in figure 3.14.
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3.6 Modelling of the data collection system

Offset
For application of our model,offset 1s defined as distance from axis
rz0 to first receiver position. It 1s standard input and follows from

equation (78}). Offset 1s set to be 155.25 m, see figure 3.11.

Source array
As the total 1length of each source subarray 15 8.65 m which equals

approximatelty 0.28 A at 50 Hz, we will approximate each subarray as a
monopole. The source array 1s readilly modelled by application of the
previously derived three-dimensional capablities of ocur numerical
model. The source array 1s aligned with the axes 0:=0, zz7.5 m, the

center subarray on the axis rz=0.

Receiver array

The hydrophone group separation, S0 m, sets an upper limit on
observeble nonaliased horizontal wavenumber: approximately 0.06 m'1.
Our modellang of the receiver array approximates the actual array by
computing a 4096 element array with hydrophone spacing 0.79 m. This
array 1s divided 1into 64 subgroups, each subgroup consists of 6&
hydrophanes with spacing between hydrophone groups also equal to 0.79
m. Application of equations (77) with hydrophone separation 0.79 m
gives the total range of horizontal wavenumber to be 8.855 mA‘. [t 1s
thus sufficient to compute a horizontal wavenumber spectrum ranging
from approximately zero to 0.12 m‘l an1 set the region ranging from

- -1
0.12m " to 8.855 m ' equal to zero

As previously mentioned, the receiver array consists of 52 hydrophone
groups, each again conslsting of 64 hydrophones. The approximations
assume: each hydrophone group to consist of 64 equispaced elements as
opposed to the two 32-element groups spaced 3 m apart of the actual
array, that the separation between groups 1s 0.79 m as opposed to 3 m
and that the array consists of 64 as opposed to 52 hydrophone groups.
These approximations are not considered to be of significant
consequence, because, as demonstrated 1in figure 3.13, the role of this

hydrophone «<lustering 1s to create a spatial low pass filter with
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-1
first minimum at approvimately 0.12 m

The reasons for making these approximations is to secure that the
wldth of the horizontal wavenumber bins remain unchanged and that all
energy represented by the original horizontal wavenumber spectrum 1s

included 1n the modelled response.

The aequence a1 modelling of recelver array 1s:
-far each of 128 fregquencres:
-compute 64 point horizontal wavenumber spectrum from 0.- te

0.12 m !

-preweight according to (78}
-1aclude zeroes up to 4096 points oorresponding to
horizontal wavenumper 4. 855 m
-perform 4096 point FFT over prewelghted K-spectrum
-postwelght according 2 "3
-1nclude zeroes in frequency D1ns 23 Yy 268
-256 point FFT over all frej.eniiaes
-take real part
-summatian over 64 hydrophone 3roups, each with 64 hydrophones
-1nverse postwelghting according to (78)

-64 point FFT over X-direction

-256 point FFT over T-direction

Figure 3.14 shows an F-K diagram for the same test case that we have
1nvestigated previously, except for that the source- and array
configuration 15 modelled as described here. It becomes clear that the
effects of source- and recelver geometry 15 to emphasize the
continuous reglon of the F-K domain. This 1s obviously an advantage
for the seismological purposes for which the system 15 designed, as 1t

directs energy down into the ocean bottom.

As we described in the chapter on data collection system response, the

effect of the source array 1s to produce a downward propagating maln

lobe.
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3.1 Geoacoustical background information

From [19) we take the

geoacoustical background information avallable for the area 1n

our shots have been recorded:
layer number 1:
compressional wave vel. [(m/s)

density (kg/ma)

thickness [(m)
layer number 2:

age

sediment & rock type
compressional wave vel. (m/s)
shear wave vel. (m/s)
compresslonal wave attenuation (dB/A)
shear wave attenuation (dB/A)
density (kg/ml)

thickness (m)
layer number 3;

age
sediment & rock type
compressional wave vel. {m/s)
shear wave 21, (m/s)
compressional wave attenuation (dB/A)
shear wave attenuation (dB/A)

density (kg/m3)

thickness (m}

followlng

which

shows the prior known

which

water
1675-1485
1000
50-100

]UraSSlC-thaSSLC1
shale-sandstone
4200-4800
2100-2400

0.3-0.8

1.0-2.8

2450-2650
800-1000

triassic

shale sancdstone
5100-5500
2250-2750
0.1-0.5

0.3-1.9
2.65-2.75
800-1200
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layer number ¢4:

age
sediment & rock type
{m/s} 5800~

2800-

compressional wave vel.
shear wave vel. (m/s)
compressional wave attenuation (dB/A)
shear wave attenuation (dB/AN)

density (kg/m’) 2800-

thickness (m)

can be partly covered by 0.3-3 m of till,

Holocene mud

glaciomarine sediments or
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1.8 ldentification- and modelling of events in the measured data

F-K diagrams for shots numbered !, 52, 100 are shown in figures 3.15
to 3.17 respectively. As the sailed distance between each shot 1is S0
m, the distance from first to second and third plot is 2.5- and 5 km

respectively.

Before going into a more detailed analysis, we would like to note the
resemblance between the three figures, which of course suggests that
the parameters whlich govern propagation 1in the water layer are
baslcally the same within this S km stretch. As a consequence, the
environmental parameters we may identify are relatively valid for at
least this area. It 1s 1in all figures possible to identify the 0., 1.,
2. and 3. mode. It 1s also possible to 1dentify aliased energy 1in the
1

- -1
g.12 m to 0.24 m horizontal wavenumber region, especlally 1n

figqure 3.17. This will be more commented on and explolted.

3.8.1 First approximation

We wlll now, having established a framework for understanding some of
“he features of the F-K plot, proceed to attempt to interpret the F-K
diagrams for the three shots we have presented. We will concentrate

our attention on the first shot, shown 1n figure 3.1S.

We will start out by determining the average velocity for
compressional waves 1n the water layer. As we already know from a
previous section, the phase velocity of a mode will approach the water
veloclity assymptotically from above, the group velocit; wall approach
the water velocity asymptotically from below, and hence the tangent of
a mode at “high” F-K values represents the water velocity. From figure
3.15, a trained eye can observe that the 1. mode 1s spatially aliased

and thus cantinues from approximately {0,30}. The contour plot of
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figure 3.15 1s shown 1n figure 3.18 where a line marker for 1466 m/s
passing through {0.12,28} 1is drawn, also for the spatially aliased
region. The first mode lies abave the line marker: its phase velocity
1s greater than 1466 m/s and its group velocity (slope) has & lower
value than that of the 1line marker's 1466 m/s. It should now, 1f
neccessary, be easier to identify the aliased 1. mode in the surface

plot of figure 3.15.

Wwe should also notice that the 1466 m/s line marker crosses the @.
mode close to its peak. As we know, this peak 15 an effect of both the
medium and the source geometry, so we will not draw any firm
conclusions based on the peak. We notice, however, that the
assymptotic phase velocilties are above the line marker at low
frequency-wavenumbers in accordance wlth the previously described

testcase. The 0. mode will be looked into 1in the following.

The 1line marker in figure 3.18 passes through {0.12,28} 1n the F-K
plot. The points {0.12,27.5} and {0.12,28.5} <correspond to phase
velocities 1440 m/s and 1492 m/s respectively (+1.87). These points
are in the order of reasonable observation accuracy. Obviously, this
is not a wvery accurate method for determining ocean sound speed
velocity by the underwater acoustician’s standards.

We now proceed to estimate the cut-off frequencies for the 1., 2. and
3. mode. This 1s found to be done simplest by wusing a ten-point
divider along the frequency axis. With point 0 at the origln, point 1
at the 1. mode, point 3 at the 2. mode and so on, we arrive at an
estlpated cut-off frequency for the 1. mode to be 7 Hz. Inserting this
value and the phase veloclty for compressional waves 1n the water

layer, 1466 m/s, in equation (92), yields a water depth of 52.3 m.

The surface plot in figure 3.15 shows two very distinct peaks 1n the
1. and 2. mode. These peaks are partly a result of the source
geometry, but they are much sharper than the lobes of the source
diagram, see figure 3.13. We take these peaks to be at the phase

veloci®y of the compressional wave 1n the ocean bottom and draw a line
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through them as shown 1in figure 3.19. Agaln, the accuracy 1s limited,

but 1f we accept the point {0.1189.70} ('), we arrive at 3700 m/s.

Estimation of the ocean bottom shear wave veloclty 15 not quite so
straightforward as the other quantities. If the data were not
"¢contaminated” wilth the source array structure, and also 1f the
hydrophone spacing were closer so that we could observe a higher
horizontal wavenumber unaliised, we could look for the “pointis}’
where the F-K response rises up and becomes discrete and also perhaps
for the point{s) where the group- and phase velocities are equal. As
this 1s not the case here, we shall have to rely more heavily on the

1nformation the D. mode may be able to yield.

An estimate of the Rayleigh- and Scholte wave velocities for the ocean
bottom 1s indicated by the line markers 1in figure 3.10. It must be
appreciated that the determination of these quantities 1¢ rather

subjective.

The Rayleigh- and Scholte wave velocities for some values of shear
velocity, computed as described in appendix !, 1s shown in table 1.
The compressional wave phase velocities for water and bottom are those
that we have arrived at: 1466 m/s and 3700 m/s and the density of the

ocean bottom 1s assumed to be 2500 kg/m3.
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shear p.Rayleigh| Scholte
[m/s] [m/s] [m/s]

1200 137 1137
1400 1322 1322
1600 1503 1377
1800 1682 1370
1850 1726 1368
1900 1768 1364
1915 1780 1363
1950 1811 1362
1990 1844 1358
2000 1853 1358
Table 1: Computed values of pseudo-Raylergh- and Scholte wave

velicities vs. shear velocity.

From table !, we see that for shear velocities greater than the water
velocity, 1t 1s the pseudo-Raylergh velocity that 1s mowtly 1nfluenced
by variartions 1n sound speed. All the computed Scholte wave veloclties
lie higher than 1204 m/s as estimated 1n figure 3.20. We wlll for the
time beeing assume the shear veloclity of 1315 m/3s which matches the
estimated pseudo-Rayleigh velocity, 1780 m/s figure 3.20. The 1line
marker for 191% m/s passing through {0.12,36.57}, seems to be somewhat
tuo low for the group velocity to equal the phase velocity 1n  the 1.
mode This 1s not possible to determine with certainity, but 1t would
seem that a somewhat higher shear velocity: 1n the o der of 1990 m/;:,
passing through {0.12,38} 1n figure 3.21, would give a better €1t to
the t. mode. This 1mplies a pseudo-Rayleigh velocity of 1844 m/s (from
table 1) passing through {0.12,35.2} which 1s acceptable when adopted

to shot number 1 figure 3.2,
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The geogacoustlical model presented 1n chapter 3.7 suggests hilgher
compressional- and shear wvelocities 1n the first bottom layer:
4200-4800 m/s and 2100-2400 m/s respectively. The same bottom type,
shale-sandstone, may according to appendix 2, however, have
compressional- and shear velocities in the range 2100-4800 m/s and
1200-2400 m/s respectively. The estimated values should thus be well

within gealogical acceptable bounds.

We do not see any feasible criteria for determination of ocean bottom
density and will, based on the geoacoustical model on chapter 3.7,
assume 1t to be 2500 kg/mj. The losses will not be considered quite

yet.

Summarizing, we have arrived at the following conclusions for a first

approximation to the environmental data governing shot number 1.:

compressional wave phase velocity 1n water: 1466 m/s
campressianal wave phase velocity 1in bottom: 3700

shear wave phase velocity LIn bottom: 1890

water depth: 52.3 m
density of bottom (assumed): 2.5 kg/m3
attenuation of comp waves in bottom (assumed): 2 dB/A
attenuation of shear waves in bottom (assumed): 2.5

Line markers indicating these velocities and also correspanding

pseudo-~Rayleigh- and Scholte velocitlie; are shown in figure 3.21

The modelling of this 1, approximation to shot ® number 1 with
simulation of source- and recelver system 1included anc¢ excluded 1§

shown 1n figures 3.22 and 3.23 respectively.
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3.8.2 Second approximation

In comparing figure 3.22 wlth figure 3.15, t*the most striking
dilscrepancy 1s to be found i1n the continuous region wher. the model
predicts a much higher level than what 1s seen 1n the measured data.
We have seen from figures 3.13 and 3.14, that the main 1nfluence of
the source and recelver geometry 1s to emphasize this cantinuous
reglon. For the model 1nput data, we have appreciable impedance
contrast Dbetween water and bottom. [t 1s thus in no way unreasonable
that the model should predict this resp-nse 1n the continuous region.
wWwe must therefore 1look into what effects of the medium we have not

taken into account. We wilill consider the following hypothesis:

- the source-~streamer geometry 1s not according to specifications
- wrong density in the bottom

- wrong attenuation 1in the bhottom

- sloping bottom

- rough bottom

- an added bottom layer with high attenuation

An  erronuous saource-streamer geometry could conceivably be such that
the source’'s main lobe 1is distorted to be 1n the horizontal wavenumber
region where the pronounced spikes occur, approximately 0.0} m~1 to
0.04 m—1. I do not wish to speculate on the 1likeliness of this

hypothesis, as we do not have any 1information to support 1it.

We have in our model assumed an ocean bottom density of 2500 kglml.
Decreasing the reflection coefficient at the ocean bottom would 1mply
reducing the density, see figure 3.8. The absolute lowest acceptable
value 15 1000 kglma, otherwise the bottom would float wup {').
Modelling of reduced densities have shown that it 1s not sufficient to

account for the difference between model and mea.urement.
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Figures 3.9 and 3.10 show that the reflection coefficient 1n the
caontinuous reglion is not affected by variation of losses 1n the ocean
bottom. Therefore the hypothesis of wrong attenuation 1n the bottom

cannot be accepted.

Comparison of the F-X diagram for shot numbers 1, 52 and 100, figures
3.15, 3.16 and 3.17, show that they grossly resemble each other,

consequently a steep sloping bottom 1s not likely.

For the frequency regions of the F-K diagram we are considering, the
wavelength of compressional waves in water 1s 1in the order of 50 m and
more. As we have arrived at a water depth in the order of 52 m, 1t 1s
not likely that there can be bottom roughness on a scale sufficient to
produce the reduction 1in contlnuous region response we are looking

for.

Beside: the possibility of a weakly sloping bottom, we are left with
the last hypothesis: an added bottom layer with high attenuation,
inserted "on top of” the existing bottom. We should at once b2 able to
postulate some properties this layer should exhibit. As we in our data
"see” the bottom we have arrived at, the layer should be transparent
ir the sense that the impedance contrast between water and attenuating
layer 1s almost negligible. Its denslity must of course be greater than

that of the water.

Conversion of energy to shear waves cannot play an important role 1in
the continuous regior as the particle velocity of the incident
waterborne wave is close to normal to the boundary. A snear wave would
have to be downward refracted and hence have 1its *dominant particle

motion parallell to the boundary.

The lowest line marker in figure 3.23 is set at 1358 m/s which 135 the
computed Scholte wave velocity for this situation {(refere to table 1),
The 0. mode's phase velocity is above this value, but 1t 1s in the
process of reaching it asymptotically. We remember from figure 3.20,

however, that we have estimated the asymptotic value for the 0. mode
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to be at most 1204 m/s. For our sltuation where the bottom shear
velocity 1s greater than the <compressional wave phase velocCity 1n
water, 1t 1s this water velocity that has significant inflﬁence on the
Scholte wave velocity. We wlll <choose to try a compressional wave
velocity 1n the attenuation layer to be less than 1n water, for
thereby “pulling down" the Scholte wave velaocity at the lower

substrate layer.

The geoacoustlical model 1n chapter 3.7 allows for a 0.3 - 3 m thick
layer of till, glaciomarine sediments or Halocene mud. Appendix 2
indicates that <clay exhlbits compressional- and shear velocities 1in
the reglon 100-2500 m/s and 200-1000 m/3 respectively. I would also
like to add that I have participated on experiments conducted by NORE
from the research vessel H U Sverdrup 1in the same area. When we
recovered equlpment from the ocean bottom, 1t was partly covered by a

blue claylsh substance.

Based on this discussion, we will 1ntroduce a thin layer wlth high
attenuation and acoustical i1mpedance equal to water. The environmental
parameters for the 2. approximation to shot number 1 will be as shown

1in figure 3.24.
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upper half space - vacuum

0m
intermediate laver - water
comp. wave velocaty : 1466 m/s
3
density : 1000 kg/m
attenuation : standard
50 m
attenuation layer - ocean bottom
comp. wave velocity . 820 m/s
shear wave veloclty . 200 ”
density : 1800 kg/m]
comp. wave attenuation : 10 dB/A
shear wave attenuation : §
52.1m

lower half space - ocean bottom

comp. wave velocity : 3700 m/s
shear wave velocity : 1990
density : 2500 kg/m]
comp. wave attenuation : 2 dB/A
shear wave attenuation : 2.5

Figure 3.2¢ Epvironmental parameters for 2. approximation to

shat

number 1.

e - A
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The losses we have assumed for the attenuating layer are far higher
then what 1s to be expected in known bottom types [18], but they have
been exaggeratet 1i1n order to see 1f attenuation on this scale,
whatever physical explanation they may have, could account for the

observed low response 1n the continuous region.
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3.9 Discussion of fit between measurement and model

F-K diagrams for the 2. approximation with environmental data as shown
1n figure 3.24&, xncluding; and excluding simulation of source-streamer

geometry are depicted 1n figures 3.25 and 3.26 respectively.

Comparing the F-XK responses wilith and without attenuation layer,
figures 3.26 and 3.23, we can see that the attenuation layer has had
the effect of reducing the continuous F-X region response, but as can
be seen from the F-K response for the 1. approximation when we
simulate the source-receiver geometry, figure 3.25, we stlll have a
far too strong F-K response in the continuous region. Figures 3.27 to
31.32 show reflection coefficlents and bottom impedances when the
parameters of the attenuating layer are perturbed. We notice that
shear  wave-  wvelocity, -~attenuation, and denslty do not affect the
module of reflection coefficient in the cantinuous region.
Consequently, the applied shear parameters are not of significant
importance 1n the continuous region. from figuve 3.32, compared with
figures 3.27 and 3.30, 1t 1s seen that on a relative basis, 1t 1s
layer thickness and thereafter compressional wave -veloclity and

attenuation that have 1nfluence on the contlnuous reglon response.

Again, comparing the F-K response with and without the attenuating
layer., figures 3.26 and 3.23, we see that the attenuating layer has
recuced the spike alsoc at the phase veloclty equal to compressional

wave velocity 1n the substrate layer.

Obviocusly, we have not reached a sclution with a perfect fit between
measurement and model, especially on a relative gquantitative scale. 1
do feel, however, that there 15 some success on a qualitative scale:
the water, bottom P- and S- veloclity parameters have been observed and
interpreted 1n the measured data and their effects in the sense of
loci of modes, successfully modelled. Compressional wave velocities

manifest themselves clearly. The shear wave velocitiles, altough they

SN S —— - et
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have a more obscure manifestation, are <collaborated by several
1ndicators (group wvelocity equal to phase velocity for higher order

modes, pseudo-Rayleigh and Scholte wave velocities for 0. mode).

We have not been able to verify that the assumptions on which our

numerical model 1s based upon, are fulfilled.

The questian of wuniqueness of solution has not been addressed here.
The lobe structure 1n the messured F-K data have Dbeen attributed to
the side lobe structure of the source array. Further modelling, not
reported here, has shown that such a lobe structure may be caused by
multiple reflectians within a bottom layer: inter bottom layer
resgnance. If the second bottom layer has a greater P-wave veloclity
than the first, P-waves may be coupled from the water into the first
layer and experience total reflection at the boundary between 1. and
2. pottom layer. This effect can manifest itself as resonance peaks 1n
th= r2g:0n where the horizontal phase velocity 1s between the P-wave
velocities of 1. and 2. pottom layer. This hypothesis has not been
cainsidered, a5 we have to account for the effect of source sidelobes,
which are in reasonable agreement with the observed lobes.
Consegquently, a combination of F-K- and time- domain methods together
wlth a monoploe scurce, may prove an andvantage 1n solving uniqueness

prablems.

It 15 concluded that thilis work indicates that it 1s possible, for
sLtuations  with occurance of “many” multiple surface-bottom
reflections, to 1nfere ocean bhottom P- and $- wave velocltles from

near surface measurements.
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3.10 Suggestions for future work

For future work, I would first of all like to see data from a similar
experiment, but with a different source-streamer geometry. The source
should be a monopole. This 1n order not to emphasize the low
horlzontal wavenumber region and also to avoid sidelobe contamination.
This would readily resolve the question of wether the lobes observed
1n the measured data are caused by source sidelobe structure or inter
bottom layer resonance. A similar subarray of the type used 1n the
data we have examined here should suffice. It 1s of course neccessary
to look into the aspect of source level and signal to noise ratio. For
the streamer we should have closer hydrophone spacing so as to be able
to achieve a greater unallased horizontal wavenumber. It would be an
advantage to repeat the experiment in the same general area. 1€
another area were to be <chosen, one should seek a flat hard
homogeneous bottom so that the horizontal stratification assumption of
the model 1s fullfilled and also such thit we have "many” multiple
reflections, + @ a high Q@ resonator which consequently shows a

pronounced mode structure.

One should further be aware of the water depth, such that the number

of modes 1s within practical limits.

One should, 1n a possible continuation of this work, look i1nto the
feasihility of combining time- and F-K- domain methods, perhaps 1n an

alternating 1terative manner.

Automatlc numerical 1teration of model output to match measurement may
be undertaken 1n the future, but 1nitial settings of the mcdel must,

in my opinion, be carried out prior to numerical iteration.

A future experiment should have the capabilities of ensuring that the

assumptions on which the model 1s based, are fullfilled.
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4 CONCLUSION

A numerical model of wave propagation 1n horizontally stratified media
has been presented. The model is based on FFP-, global matrix- and
angular expansion techniques. The solution s exact, except for a

¢ylindrical regilon in which center axis and sourcel(s) are included.

Shot data, collected by a seismic survey configuration consisting of a
source array and a streamer 1s presented. Limitation 1n system
response imposed by source-streamer geometry 1s discussed and

modelled.

The effects of environmental parameters on events observed 1in measured
data are analyzed and modelled in the F-X domain. The fit between
model and measurement compares for location of modes, but not
completely on a relative-quantitative scale. Uniquness of estimated
environmental parameters 1s discussed, but not proved. The F-K methcds
applied here should be supplemented with other methods, possibly time

domain methods.

A  future experiment with monopole source and closer streamerhydro-
phone separation should be carried out. It shoul preferably take place
in the same area, or in a similar area whlch 15 horizontally statified
with multiple reflections, and a depth so that the number of modes 1s
wlthin practical 1limits. Care samples are suggested for verification

of estimated parameters

The methods developed here indicate that, under favourable conditions,
1s possible to infere ocean bottom parameters such as P- and S- wave

phase velocities from near surface measurements.
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Appendix 1: Rayleigh- pseudo-Rayieigh and Scholte waves

From D Rauch [18]. we take the following equation for determination of
Rayleigh- and Scholte wave velocitles at a boundary between a solid

and vacuum or fluld respectively.

12
axix-1) ey 12 gax-11? - HMHZ _— (A-1)
{X-N)
where
) c c c
H = W N = -3 R = = X = ~=
0 c c c

and the subscripts w,c,s refer ¢to water, compressional and shear
properties respectively and unsubscripted ¢ 1s the the horizontal wave
velocity. Ffor the case of vacuum over solid, H, and consequently the

last term of {A-1) vanishes,.

For both <cases the numerical solution is found by stepping X through

its possible range and seeking the minimum.
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Appendix : oacoustic roperties ¢f varjous diment and rock

types

Jan 1Inge Faleide [19] has compiled the following tabel for some
geoacoustical properties of various sediment and rock type. He has

collected these data from several sources to which he referes

collectively.

P-VELOCITY S-VELQCITY DENSITY DENSITY

(m/s) (m/s} (g/cmj) (aver)

AIR 310- 360 0.0013
oIL 1250-1400 0.60-0.90
WATER 1400-1585¢C 0.98-1.05 1.025
ICE 3100-4200 1600-2000 0.88-1.07 0,95
CLAY 1100-2500 200-1000 1.50-2.60" 2.20
SILT 1400-1800 150- 450 1.80-2.20 1.95
SAND 10Q00-2000 100- 500 1.60-2.290 1.90
MORAINE 1500-2700 506-1300 1.50-2.00 1.80
SHALE 2700-4800 1500-2400 2.00-3.20 2.40
SANDSTONE 2100-6500 1200-2800 2.10-2.80 2.135
CHALK 2100-46200 1000-2000 1.60-2.60 2.00
GYPSUM 2000-3%500 1000-20090 2.20-2.560 2.135
ANHYDRITE 3500-5500 2000-3200 2.80-3.00 2.90
SALT 4200-5500 2000-3200 2.10-2.40 2.15
LIMESTONE 3400-7000 1800-3400 2.10-2.90 2.55
DOLOMITE 3500-6900 2000-3800 2.40-2.90 2.715%
GNEISS 3500-7500 1700-3600 2.40-3.00 2.75
MARBLE 3750-6950 2000-3800 2.60-2.90 2.758
GRANITE 4750-6000 2400-3800 2.50-2.90 2.65
BASALY 5500-6400 2700-3400 2.70-3.30 3.00
GABBRO 6450-6700 3400-3700 2.70-3.30 j.co
ULTRABASIC 7400-8600 3700-4400 3.00-3.40 3.20

ROCKS
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